
C Language Programming Conventions
(Document No.320SM0009)

Approval Review Preparation

Name:

Engineering Div. 2

Yonemura

Name:

Engineering Div. 2

Takei

Name:

Engineering Div. 2

Saiki

Date
2016/12/22

Date
2016/12/22

Date
2016/12/22

C Language

Programming Conventions

Document No.320SM0009

C Language Programming Conventions
(Document No.320SM0009)

 1

Revision history

No. Date Version Revised content Remarks

Ex. 20XX/XX/XX RevX. X Create New

1 2005/4/27 Rev1. 0 Create New

2 2016/12/22 Rev1. 1 Correction with
reference to Misra-C
material

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

C Language Programming Conventions
(Document No.320SM0009)

 2

Table of contents

1. Coding structure conventions

1-1. Coding structure

1-2. Structure overview

2. Header format conventions

2-1. File specification header

2-2. Internal function header

3. Commenting conventions

4. Data type definition conventions

4-1. Data types

4-2. Data type definitions

5. Global variable naming conventions

6. Local variable naming conventions

7. Argument variable naming conventions

8. File types and purpose

9. Source code creation

C Language Programming Conventions
(Document No.320SM0009)

 3

Defining everything within a program would take away from software its most significant

characteristic, freedom. Therefore this document scope will be strictly limited to the structural

conventions in programming. Structural conventions refer to program coding conventions,

variable and constant naming conventions, and file structure conventions.

1. Coding structure conventions

1-1. Coding structure

The basic C language program file structure consists of the parts shown below:

 1) File specification header

 /**/

 /* Definition of specification */

 /**/

 2) #Include definition

 #include “include.h” /* include General */

 3) Internal function specification header

 /**/

 /* Definition of specification */

 /**/

 main()

 {

 4) Local variable declaration

 U_INT lui_flag; /* comment */

 5) Program statement

 Execution statement

 }

 3) Internal function specification header

 /**/

 /* Definition of specification */

 /**/

 6) Argument variable declaration

 submenu(U_CHR puc_flag,S_INT psi_number)

 {

 4) Local variable declaration part

 U_INT lui_flag; /* comment */

 5) Execution executive

 Execution statement

 }

C Language Programming Conventions
(Document No.320SM0009)

 4

1-2. Structure overview

1) File specification header

Details the program processing specification

Refer to Header format conventions for more information

2) #Include definition

Defines the program’s #include files

Usually defines the #include.h files incorporating all desired header definitions

3) Internal function specification header

Specifies the internal function type and parameters

Refer to Header format conventions for more information

4) Local variable declaration

Defines the desired function variables

Refer to Local variable naming conventions for more information

5) Program statements

Contains the execution statements

Use functional modules as far as possible

6) Argument variable declaration

Defines the argument type if present in the function

Refer to Argument variable naming conventions for details

C Language Programming Conventions
(Document No.320SM0009)

 5

2. Header format conventions

There are two formatting conventions for the header, examples of which are shown below.

2-1. File specification header

Unify the file header format as follows

2-2. Internal function header

/**/

/* */

/* 1) Product name : GX-94 */

/* 2) System : Calculation module */

/* 3) Development language : C language */

/* 4) Creator · Date : s.kizaki 1995-01-02 */

/* 5) Updater · Date : s.kizaki : 1995-01-30 */

/* (Function name changed) */

/* */

/* 6) Overview :Perform density calculation and */

/* temperature calculation. */

/* */

/**/

/*--*/

/* Overview : Self-diagnosis */

/* Function name : trbl_chk */

/* Creator · Date : s-kizaki 1995-01-02 */

/* Updater · Date : s-kizaki 1995-01-30 */

/* Argument : None */

/* Return value : None */

/* Restrictions : */

/* Remarks : */

/* Unit number : req1-1-1-1 */

/*--*/

C Language Programming Conventions
(Document No.320SM0009)

 6

3. Commenting conventions

ａ. Comment statements are added from position 40 to position70.

When the program statement extends beyond position 40, add the comment as shown

below:

ｂ. Comments for debugging are added from position 71 (To make it stand out)

if((abc == def) && (ghi == ikl) && (lmn))

 /* conditions......... */

{

.........

.........

}

if((abc == def) && (ghi == ikl) && (lmn))

 /* conditions......... */ /*dump*/

C Language Programming Conventions
(Document No.320SM0009)

 7

4. Data type definition conventions

4-1. Data types

The data type definitions shown below are to be used when developing in C.

Only the definitions in the right-most column may be used for defining global

and local variables in the program source code.

Type Attribute Definition

Char signed
unsigned

S_CHR
U_CHR

Int signed
unsigned

S_INT
U_INT

Long signed
unsigned

S_LNG
U_LNG

4-2. Data type definitions

Always add these definitions to the #include.h file.

#define S_CHR signed char

#define U_CHR unsigned char

#define S_INT signed int

#define U_INT unsigned int

#define S_LNG signed long

#define U_LNG unsigned long

C Language Programming Conventions
(Document No.320SM0009)

 8

5. Global variable naming conventions

Define global variables collectively (in the ram.c file).

Global variable names should be meaningful (Do not use your name, etc).

The variable names should have the prefix specified below to identify the global variable

type.

An underscore (“_”) should be inserted between the prefix and variable name.

Always add comments.

Do not define multiple variables of the same type on the same line by separating them with

commas.

2-character variable prefixes:

Type Prefix Example Remarks

S_CHR sc sc_data1 -

U_CHR uc uc_data2 -

S_INT si si_data3 -

U_INT ui ui_data4 -

S_LNG sl sl_data5 -

U_LNG ul ul_data6 -

Structure st st_file. uc_flag Add a type to a
member

3-character variable prefixes:

For a pointer type variable (an address reference), append a “p” to the prefix for a 3-

character prefix for pointers.

Examples:

Define a global variable to store data.

(signed char) Define as a type variable: sc_data

(unsigned char) Define as a type variable: uc_data

(unsigned char) Defined as pointer variable to type: ucp_data

C Language Programming Conventions
(Document No.320SM0009)

 9

6. Local variable naming convention

Local variable names (for other than simple loop counters) should be meaningful

(Do not use your name, etc).

The variable name should have the prefix specified below to identify the local

variable type.

An underscore (“_”) should be inserted between the prefix and variable name.

3-character variable prefixes:

Type Additional character Example Remarks

S_CHR lsc lsc_data1 -

U_CHR luc luc_data2 -

S_INT lsi lsi_data3 -

U_INT lui lui_data4 -

S_LNG lsl lsl_data5 -

U_LNG lul lul_data6 -

Structure st st_file. luc_flag Add a type to a member

4-character variable prefixes:

For a pointer type variable (an address reference), append a “p” to the prefix for

a 4-character prefix for pointers.

Examples:

Define a local variable that stores data.

(signed char) Define as a type variable: lsc_data

(unsigned char) Define as a type variable: luc_data

(unsigned char) Defined as pointer variable to type: lucp_data

C Language Programming Conventions
(Document No.320SM0009)

 10

7. Argument naming conventions

Argument variable names should be meaningful (Do not use your name, etc).

The variable name should have the prefix specified below to identify the argument variable

type

An underscore (“_”) should be inserted between the prefix and variable name.

3-character variable prefixes:

Type Additional character Example Remarks

S_CHR psc psc_data1 -

U_CHR puc puc_data2 -

S_INT psi psi_data3 -

U_INT pui pui_data4 -

S_LNG psl psl_data5 -

U_LNG pul pul_data6 -

Structure st st_file. puc_flag Add a type to a
member

4-character variable prefixes:

For a pointer type variable (an address reference), append a “p” to the prefix for a 4-character

prefix for pointers.

Examples:

Define a local variable that stores data.

(signed char) Define as a type variable: psc_data

(unsigned char) Define as a type variable: puc_data

(unsigned char) Defined as pointer variable to type: pucp_data

C Language Programming Conventions
(Document No.320SM0009)

 11

8. File types and purpose

Below are typical examples of the conventions.

1) #Include file

Purpose: Collectively includes the header files containing the following

definitions and declarations: MPU register and I/O related

definitions, global variable definitions, function prototype

declarations, constant definitions

Extension: h (header)

Name: include.h (fixed)

2) MPU register and I/O related definition file

Purpose: A definition file, mainly defines the registers and I/O address

definitions for each MPU.

Extension: h (header)

Name: [MPU name].h (variable)

Example: (For Hitachi H8/532 MPU) 532. h

3) Source file of each function module

Purpose: Each function module has a source file. Typically there are multiple

files for each main module source file function.

Extension: c (Source)

Name: main. c (fixed)

[Function module name].c (variable)

Example: main. c
denst. c
alarm. c
disp. c

C Language Programming Conventions
(Document No.320SM0009)

 12

4) Header file of each function module

Purpose: Declares the prototype of the function declared in the source file for

each function module.

Extension: h (header)

Name: main. h (fixed)

[Function module name]. h (variable)

Example: main. h
denst. h
alarm. h
disp. h

5) Global variable definition source file

Purpose: Defines global variables commonly referred to by each function

module.

Extension: c (Source)

Name: ram. c (fixed)

6) Global variable definition header file

Purpose: Header file declaring global variables for referencing from each

functional module.

Extension: h (header)

Name: ram. h (fixed)

7) Constant definition source file

Purpose: Source file of constant variable definitions for preventing change to

the definition variable value. Mainly used for referencing calibration

curve table and comment table addresses.

Extension: c (Source)

Name: constant. c (fixed)

8) Constant definition header file

Purpose: Header file for conveying to other function modules that the variable

defined in the constant definition source file is constant

(unchangeable). Mainly used for referencing calibration curve table

and comment table addresses.

Extension: h (header)

Name: constant. h (fixed)

C Language Programming Conventions
(Document No.320SM0009)

 13

9. Source code creation

Overview of conventions for standard application coding

Rule New code
Existing code
(Proven in use)

Existing code
(Not Proven in use)

1 to 2 Required*1 Request*1 Required*1

3 to 8 Required*1 Not required Request*1

9 Required*1 Not required Request*1

10 Required*1 Not required Not required
*1If compliance to the coding conventions cannot be met, verify the source code’s suitability with
a Design Review (DR).

C language rules
*1 Page refers to the page number of the MISRA-C 2004 C Reliability Guide for C language for
embedded developers.
*2 If you start with P, R or M with MISRA rules, please refer to the Coding Method Guide for
Embedded Software Development [C Language Version].

Law of subset of C language Page*1 MISRA rule

1 About function/variable declaration

(a) Minimisation of run-time failures shall be ensured by the use of
at least one of
(a) static analysis tools/techniques;
(b) dynamic analysis tools/techniques;
(c) explicit coding of checks to handle run-time faults.

p. 316 21.1 (Req)

(b) Functions shall have prototype declarations and the prototype shall be
visible at both the function definition and call.

p. 96 8.1 (Req)

Whenever an object or function is declared or defined, its type shall be
explicitly stated.

p. 101 8.2 (Req)

(i) Functions shall not be defined with variable numbers of arguments. p. 231 16.1 (Req)

(ii) Identifiers (internal and external) shall not rely on the significance of more
than 31 characters.

p. 71 5.1 (Req)

(iii) No identifier name should be reused. p. 83 5.7 (Adv)

(iv) A const declared variable must have a single variable name - -

2 All arithmetic expressions and assignment statements

(a) Limited dependence should be placed on C’s operator precedence rules
in expressions

p. 163 12.1 (Adv)

(b) When performing arithmetic operations or comparisons of expressions
mixed with signed and unsigned, an explicit cast to the expected type
shall
be performed.

p. 37*2 R2.42

3 All logical expressions

(a) Limited dependence should be placed on C’s operator precedence rules
in expressions

p. 163 12.1 (Adv)

The value of an expression shall be the same under any order of
evaluation that the standard permits.

p. 166 12.2 (Req)

The right-hand operand of a logical && or || operator shall not contain
side effects.

p. 171 12.4 (Req)

(b) Unsigned integer constant expressions shall be described within the
range that can be represented with the result type.

p. 34*2 R2.3.1

(c) Assignment operators shall not be used in expressions to examine true
or false, except for conventionally used notations.

p. 94*2 M3.3.3

C Language Programming Conventions
(Document No.320SM0009)

 14

(d) Functions shall have prototype declarations and the prototype shall be
visible at both the function definition and call.

p. 96 8.1 (Req)

(e) Floating point expressions shall not be tested for equality or inequality. p. 194 13.3 (Req)

4 All pointer expressions

(a) Destination pointed by a pointer shall be referenced to after checking that
the pointer is not the null pointer.

p. 52*2 R3.2.2

(b) Conversions shall not be performed between a pointer to a function and
any type other than an integral type.

p. 155 11.1 (Req)

(c) Before accessing the pointer, its data type and value range shall be
verified. before accessing

 - -

(d) Pointer arithmetic shall only be applied to pointers that address an array
or array element.

p. 248 17.1 (Req)

(i) Pointer subtraction shall only be applied to pointers that address
elements of the same array.

p. 250 17.2 (Req)

(ii) A cast should not be performed between a pointer type and an integral
type.

p. 159 11.3 (Adv)

A cast should not be performed between a pointer to object type and a
different pointer to object type.

p. 160 11.4 (Adv)

(iii) The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist.

p. 259 17.6 (Req)

5 All goto statements

(a) The goto statement shall not be used. p. 209 14.4 (Req)

6 All switch statements

(a) The type contained in a switch statement shall be consistent throughout
the project.

 - -

(b) A switch expression shall not represent a value that is effectively
Boolean.

p. 228 15.4 (Req)

(c) The final clause of a switch statement shall be the default clause p. 225 15.3 (Req)

(d) Every switch statement shall have at least one case clause. p. 230 15.5 (Req)

(e) An unconditional break statement shall terminate every non‑empty

switch clause.

p. 223 15.2 (Req)

7 Bit field, bit representation and bit operator

(a) Bitwise operators shall not be applied to operands whose underlying type
is signed.

p. 180 12.7 (Req)

(b) The implementation defined behaviour and packing of bitfields shall be
documented if being relied upon.

p. 64 3.5 (Req)

8 Definition of a set of software and tools that utilize the whole function

(a) Assembly language shall be encapsulated and isolated p. 52 2.1 (Req)

(b) No reliance shall be placed on undefined or unspecified behaviour. p. 47 1.2 (Req)

(c) To use characters other than those defined in the language standard for
writing a program, the compiler specifications shall be confirmed, and
their usage shall be defined.

p.
124*2

P1.2.1

(d) Multiple compilers and/or languages shall only be used if there is a
common defined interface standard for object code to which the
languages/compilers/assemblers conform.

p. 49 1.3 (Req)

９ Guidelines for error prevention

(a) Trigraphs shall not be used. p. 70 4.2 (Req)

(b) Braces shall be used to indicate and match the structure in the non-zero
initialisation of arrays and structures.

p. 129 9.2 (Req)

(c) In an enumerator list, the “=” construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialised.

p. 132 9.3 (Req)

C Language Programming Conventions
(Document No.320SM0009)

 15

(d) If a function returns error information, then that error information shall be
tested.

p. 246 16.10 (Req)

(e) #include statements in a file should only be preceded by other
preprocessor directives or comments.

p. 272 19.1 (Adv)

(f) All uses of the #pragma directive shall be documented and explained. p. 63 3.4 (Req)

(g) Precautions shall be taken in order to prevent the contents of a header
file being included twice.

p. 294 19.15 (Req)

(h) Unions shall not be used. p. 270 18.4 (Req)

(i) Automatic variables of the same type used for the similar purposes may
be declared in one declaration statement, but variables with initialization
and variables without initialization shall not be mixed.

p. 58*2 M1.2.1

(j) Whenever an object or function is declared or defined, its type shall be
explicitly stated.

p. 101 8.2 (Req)

(k) The comma operator shall not be used. p. 187 12.10 (Req)

(l) There shall be no unreachable code. p. 202 14.1 (Req)

(m) 0 shall be used for the null pointer. NULL shall not be used in any case. p.
110*2

M4.6.1

(n) An area of memory shall not be reused for unrelated purposes. p. 268 18.3 (Req)

(o) Dynamic heap memory allocation shall not be used. p. 308 20.4 (Req)

(p) Interrupts shall be limited only to simple processes. - -

(q) The signal handling facilities of <signal.h> shall not be used. p. 312 20.8 (Req)

(r) All usage of implementation-defined behaviour shall be documented. p. 60 3.1 (Req)

(s) Functions shall not call themselves, either directly or indirectly. p. 232 16.2 (Req)

1０ Approval process specified in the justification functional safety plan

(a) All libraries used in production code shall be written to comply with the
provisions of this document, and shall have been subject to appropriate
validation.

p. 68 3.6 (Req)

B. 3. 3 Rules for modular approach

(a) A software module must have only a single task. - -

(b) Connections between software modules shall be strictly defined.
Software must be robustly consistent.

 - -

(c) Source code shall be limited so that a module does not exceed 100 lines
excluding comments.

 - -

(d) The cyclomatic complexity of a module should be kept to 10 or less. - -

(e) A function shall have a single point of exit at the end of the function. p. 214 14.7 (Req)

(f) A software module must be used in conjunction with other software
modules via an interface.
Global variables should be made available only within a structure, with
access restrictions, and only for the instance for which it is used.

 - -

(g) All usage of implementation-defined behaviour shall be documented. p. 60 3.1 (Req)

(h) Unnecessary variables shall not be used. - -

B. 3. 4 Rules for structured programming

(a) Follow the rules defined in section 3. 3 (Rules for Modular Approach). - -

(b) Follow the rules defined in section 3. 2 (Rules for Language Subset of
C++).

 - -

(c) Simplify as much as possible the relationship between input and output
so as to minimize the number of paths when creating a software module.

 - -

(d) For any iteration statement there shall be at most one break statement
used for loop termination.

p. 212 14.6 (Req)

C Language Programming Conventions
(Document No.320SM0009)

 16

(e) Numeric variables being used within a for loop for iteration counting shall
not be modified in the body of the loop.

p. 199 13.6 (Req)

(f) The three expressions of a for statement shall be concerned only with
loop control.

p. 197 13.5 (Req)

- Software that has been recognized as proven in use is not subject to the
rules above. However, if critical design changes are made to the hitherto
proven-in-use source code, the rules above shall apply to the redesign of
the source code.

 - -

References

1. Hiroshi Shima, Guide to Embedded Developers MISRA-C 2004 Guide for High Reliability in C

Language Use, Japan Standards Association

2. Kouji Hayami, Coding method guide for embedded software development [C language

version], Shoeisha Co., Ltd.

-END-

