

Fixed System Installation

Mounting the Controller

- Make sure there is sufficient space to mount controller.
- Make sure that door can be opened.
- Mount for easy access and visibility.
- Always use conduit hubs to route wires.

Controller Wiring

- Do not drill the top case and run power wires into the unit.
- Noise from wiring will cause controller to malfunction.
- Condensation may drip down conduit and damage PCB.

•3

Grounding

- Proper grounding is essential to proper system operation.
- Connect transmitter wiring shields to the ground terminal on main PCB or conduit hubs.
- Grounding at transmitter and controller may create a ground loop.

Transmitter Mounting

- Mount transmitter at eye level.
- Avoid mounting transmitters in areas of high vibration, extreme heat or cold.

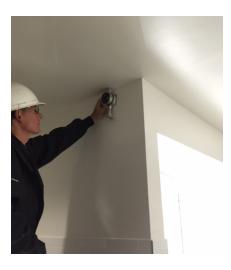
•5

Transmitter Mounting

 Mount transmitter in a location that can be easily accessed.

Transmitter Wiring

Belden Cable



- Use proper wire for each transmitter.
- Use the proper gauge wire for the distance needed.
- Insulated, shielded and jacketed cable.
- Follow local installation codes.

• 7

Transmitter Mounting

- Mount transmitters properly.
 - Lighter gases such as methane on ceiling.
 - Heavier gases such as propane, mount near floor.
 - Always place transmitter as close as possible to potential leak source.

Transmitter Mounting

Clean Installation

- Transmitters mounted in the breathing zone for general area monitoring.
- Transmitter labeling makes identification easy.

•9

Transmitter Sample Lines

- Use PTFE tubing (Teflon®) when detecting reactive gases.
- Keep sample tubing length as short as possible.
- Line filters protect pump and sensor from damage.

Sealing Conduit

- For outdoor installations, seal threads to prevent water intrusion.
- Install conduit seal to prevent water from entering into housing.

•]]

Remote Cal Adapter

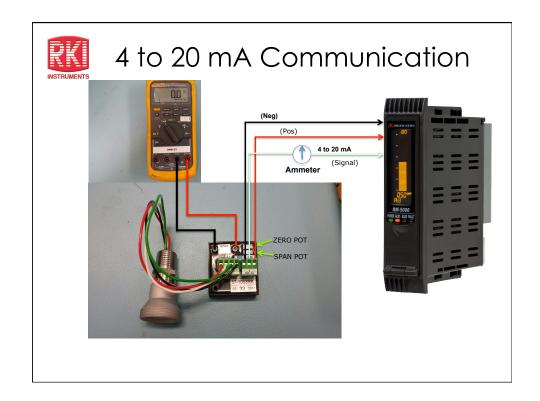
 Makes calibration simple for sensors that are mounted in locations that are difficult to access.

Battery Backup

- Battery backup will power controller and sensors during a power outage.
- Source proper battery back up to provide necessary current.

•13

Recording Devices

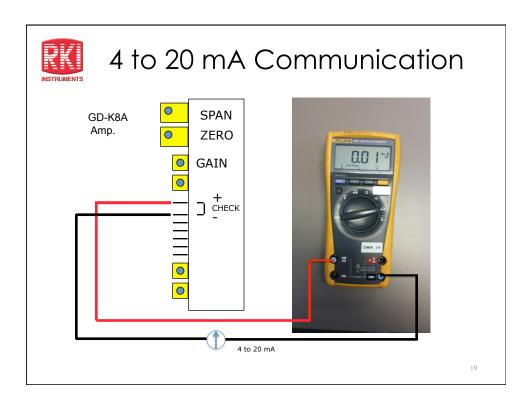

- Recording devices can provide data on exposure over time.
- Make sure that recording devices are compatible with controller output.

Communication

- RKI Instruments have several communication protocols:
 - 4 to 20 mA (most common)
 - Direct connect (can be used on all controllers except Beacon 800)
 - Modbus (found on M2A's)
 - PoE (Special order GD-70D's only)

4 to 20mA Communication

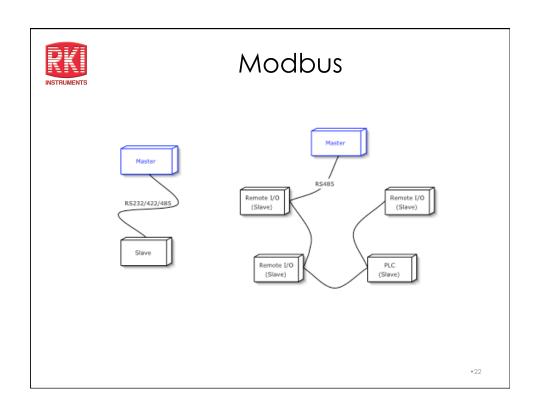
 For combustible or toxic gases, set zero to 100mV with fresh air applied.

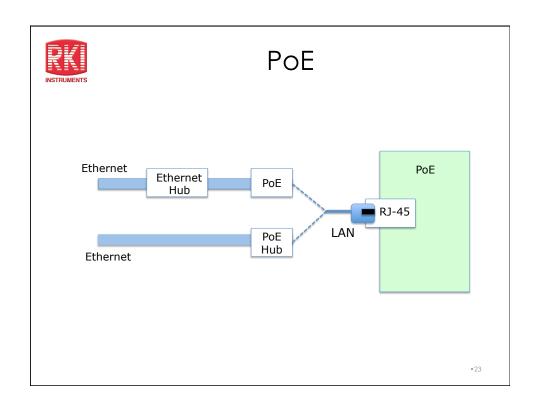

• 17

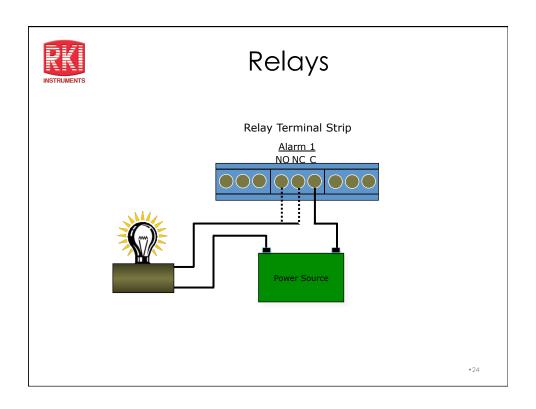
4 to 20 mA Communication

- When setting the span to 50% LEL, adjust the SPAN pot so DVM reads 300mV.
- Formula:
 - (Cal gas/Full Scale) x400 + 100 = mVsetting

Calculations


- Standard S-Type Transmitter
 - Oxygen: 20.9/full scale x 400 + 100
 - Oxygen calibration setting in mV
 - Combustible & Toxic: (Cal gas/full scale) x 400 + 100
 - Combustible/toxic span setting in mV
- Current Source Amplifier
 - Toxics: (Cal gas/full scale) x 16 + 4
 - Toxic span setting in mA



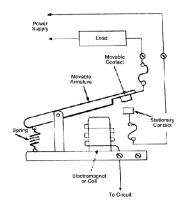

Direct Connect

- Sensor directly wired to controller.
- No amplifier housing.

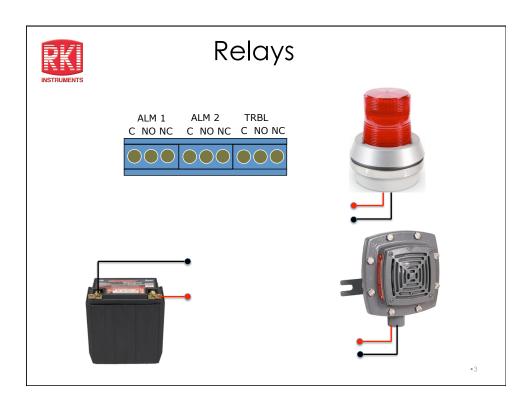
Area Classifications

NEC Division System Gas Groups				
Area Group		Representative Materials		
Class I, Division 1 & 2	Α	Acetylene		
	В	Hydrogen		
	С	Ethylene		
	D	Propane		
Class II, Division I & 2	E (Division 1 only)	Metal dusts, such as magnesium		
	F	Carbonaceous dusts, such as carbon & Charcoal		
	G	Non-conductive dusts, such as flour, grain		
	None	Ignitable fibers/flyings, such as cotton lint, flax & rayon		

• 25


Questions?

Relays


- Form A
 - Common & Normally
 Open Contact
- Form B
 - Common & Normally Closed Contact
- Form C
 - Common, Normally
 Open and Normally
 Closed Contacts

Relays

- Dry contacts
 - Not powered
- Current ratings are critical
 - Verify that relay meets current capacity.
 - Use "Slave" or high power relay option on Beacon 800 to switch large loads.
- Use diode or Transient Voltage Suppressor (Tranzorb) to negate stored energy in high power relays to prevent damage.

Training Notes
